NASA Harvest Platforms for Collecting and Sharing In-situ Observations of Essential Agricultural Variables

crossref

引用 0|浏览1
暂无评分
摘要
<p>Agricultural monitoring has been an important topic in remote sensing research since the inception of satellite Earth observations. With early national-scale crop yield estimation efforts dating back to the LACIE and AgriSTARS projects of the 1970s and 1980s, the value and importance of food production, combined with the high variability of crop genotypes and phenotypes, have continued to spur constant innovation in mapping and monitoring agricultural land from remote sensing data.</p><p>Cropland is a highly dynamic surface type that can be difficult to map with high precision and accuracy for myriad reasons, including: variability in crop type and crop rotations; intra-season growth cycles; multi-cropping practices; crop health; fallow land; farming practices; soil fertility; seed genetics; environmental factors; and more. Each of these variables also changes through time due to climate change, advancing technology, and changes in socio-economic or political drivers. Mapping and modeling agricultural variables, therefore, require constant recalibration and validation against in-situ observations that are representative of the cropping regime.</p><p>The Essential Agricultural Variables (EAVs), defined by the GEO Global Agricultural Monitoring (GEOGLAM) initiative, provide a basis for identifying the data variables and their functional requirements in terms of spatial and temporal resolution. EAVs are designed to help the GEOGLAM community prioritize the development of products that can be derived from Earth observations data to improve downstream insight into agricultural productivity. At the same time, the EAVs are instructive for developing methods and tools for collecting the in-situ data needed to evaluate the corresponding products.</p><p>Operating under the GEOGLAM Data Lifecycle, the EAVs, and the GEO data sharing and management principles, the NASA Harvest consortium on food security and agriculture collects and distributes thousands of in-situ observations for public use in the agricultureal R&D domain. These efforts are underpinned by freely accessible data collection platforms, searchable data discovery and distribution portals, and purpose-driven field measurement methodologies that balance project-specific requirements while ensuring the future reusability of the dataset.</p><p>In this presentation, we highlight the status of current in-situ datasets and tools available through NASA Harvest. Their relevance is contextualized within the GEOGLAM EAV framework, and we discuss practical issues of in-situ data collection for agricultural remote sensing applications including farmer data privacy, reducing enumerator errors, coordinating data collection campaigns, limitations of reusing data, and balancing measurement complexity with general utility.&#160;</p>
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要