ADDISC lumbar disc prosthesis: Analytical and FEA testing of novel implants.

Heliyon(2023)

引用 1|浏览0
暂无评分
摘要
The intact intervertebral disc is a six-freedom degree elastic deformation structure with shock absorption. "Ball-and-socket" TDR do not reproduce these properties inducing zygapophyseal joint overload. Elastomeric TDRs reproduce better normal disc kinematics, but repeated core deformation causes its degeneration. We aimed to create a new TDR (ADDISC) reproducing healthy disc features. We designed TDR, analyzed (Finite Element Analysis), and measured every 500,000 cycles for 10 million cycles of the flexion-extension, lateral bending, and axial rotation cyclic compression bench-testing. In the inlay case, we weighted it and measured its deformation. ADDISC has two semi-spherical articular surfaces, one rotation centre for flexion, another for extension, the third for lateral bending, and a polycarbonate urethane inlay providing shock absorption. The first contact is between PCU and metal surfaces. There is no metal-metal contact up to 2000 N, and CoCr28Mo6 absorbs the load. After 10 million cycles at 1.2-2.0 kN loads, wear 140.96 mg (35.50 mm), but no implant failures. Our TDR has a physiological motion range due to its articular surfaces' shape and the PCU inlay bumpers, minimizing the facet joint overload. ADDISC mimics healthy disc biomechanics and Instantaneous Rotation Center, absorbs shock, reduces wear, and has excellent long-term endurance.
更多
查看译文
关键词
Degenerative disc disease,Intervertebral disc degeneration,Lumbar artificial disc replacement,Lumbar disc prosthesis,Total disc arthroplasty,Total disc replacement
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要