Ultra-sensitive biosensor based on CRISPR-Cas12a and Endo IV coupled DNA hybridization reaction for uracil DNA glycosylase detection and intracellular imaging.

Biosensors & bioelectronics(2023)

引用 2|浏览4
暂无评分
摘要
As an essential biomarker associated with various diseases, Uracil-DNA Glycosylase (UDG) detection is vital for disease diagnosis, treatment selection, and prognosis assessment. In recent years, the signal amplification effect of the CRISPR-Cas12a trans-cleaved single-stranded DNA probe has provided an available strategy for constructing highly sensitive biosensors. However, its superior trans-cleavage activity has become a "double-edged sword" for building biosensors that can amplify the target signal while also amplifying the leakage signal, causing out of control. Therefore, the construction of structurally simple, extremely low-background, highly sensitive CRISPR-Cas12a-based biosensors is an urgent bottleneck problem in the field. Here, we applied CRISPR-Cas12a with a DNA hybridization reaction to develop a simple, rapid, low background, and highly sensitive method for UDG activity detection. It has no PAM restriction and the detection limit is as low as 2.5 × 10-6 U/mL. As far as we know, this method is one of the most sensitive methods for UDG detection. We also used this system to analyze UDG activity in tumor cells (LOD: 1 cell/uL) and to evaluate the ability to screen for UDG inhibitors. Furthermore, we verified the possibility of intracellular UDG activity imaging by transfecting the biosensors to the cells. We believe this novel sensor has good clinical application prospects and will effectively broaden the application space of CRISPR-Cas12a.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要