Crosslinked modified chitosan biopolymer for enhanced removal of toxic Cr(VI) from aqueous solution.

International journal of biological macromolecules(2023)

引用 2|浏览2
暂无评分
摘要
Two new crosslinked modified chitosan biopolymers, namely (CTS-VAN) and (Fe3O4@CTS-VAN) bioadsorbents were prepared starting from chitosan and 4-hydroxy-3-methoxybenzaldehyde (VAN) in presence of epichlorohydrin. The analytical techniques FT-IR, EDS, XRD, SEM and XPS besides BET surface analysis were utilized for full characterization of the bioadsorbents. Batch experiments were conducted to study the effect of various influencing parameters in Cr (VI) removal such as initial pH, contact time, adsorbent amount and initial Cr (VI) concentration. The adsorption of Cr (VI) was found out to be maximum at pH = 3 for both bioadsorbents. Langmuir isotherm fit well the adsorption process with a maximum adsorption capacity of 188.68 and 98.04 mg/g for CTS-VAN and Fe3O4@CTS-VAN, respectively. The adsorption process followed pseudo second-order kinetics with R2 values of 1 and 0.9938 for CTS-VAN and Fe3O4@CTS-VAN, respectively. X-ray photoelectron spectroscopy (XPS) analysis showed that Cr(III) accounted for 83 % of the total Cr bound to bioadsorbents surface, which indicated reductive adsorption was responsible for Cr(VI) removal by the bioadsorbents. Cr(VI) was initially adsorbed on the positively charged surface of the bioadsorbents and reduced to Cr(III) by electrons provided by oxygen-comprising functional groups (e.g., CO), and consequently part of the converted Cr(III) stayed on the surface and the rest released into solution.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要