Robust and Versatile Bipedal Jumping Control through Multi-Task Reinforcement Learning


引用 0|浏览98
This work aims to push the limits of agility for bipedal robots by enabling a torque-controlled bipedal robot to perform robust and versatile dynamic jumps in the real world. We present a multi-task reinforcement learning framework to train the robot to accomplish a large variety of jumping tasks, such as jumping to different locations and directions. To improve performance on these challenging tasks, we develop a new policy structure that encodes the robot's long-term input/output (I/O) history while also providing direct access to its short-term I/O history. In order to train a versatile multi-task policy, we utilize a multi-stage training scheme that includes different training stages for different objectives. After multi-stage training, the multi-task policy can be directly transferred to Cassie, a physical bipedal robot. Training on different tasks and exploring more diverse scenarios leads to highly robust policies that can exploit the diverse set of learned skills to recover from perturbations or poor landings during real-world deployment. Such robustness in the proposed multi-task policy enables Cassie to succeed in completing a variety of challenging jump tasks in the real world, such as standing long jumps, jumping onto elevated platforms, and multi-axis jumps.
AI 理解论文