Simple Threshold (Fully Homomorphic) Encryption from LWE with Polynomial Modulus

ADVANCES IN CRYPTOLOGY, ASIACRYPT 2023, PT I(2023)

引用 0|浏览3
暂无评分
摘要
The learning with errors (LWE) assumption is a powerful tool for building encryption schemes with useful properties, such as plausible resistance to quantum computers, or support for homomorphic computations. Despite this, essentially the only method of achieving threshold decryption in schemes based on LWE requires a modulus that is superpolynomial in the security parameter, leading to a large overhead in ciphertext sizes and computation time. In this work, we propose a (fully homomorphic) encryption scheme that supports a simple t-out-of-n threshold decryption protocol while allowing for a polynomial modulus. The main idea is to use the Renyi divergence (as opposed to the statistical distance as in previous works) as a measure of distribution closeness. This comes with some technical obstacles, due to the difficulty of using the Renyi divergence in decisional security notions such as standard semantic security. We overcome this by constructing a threshold scheme with a weaker notion of one-way security and then showing how to transform any one-way (fully homomorphic) threshold scheme into one guaranteeing indistinguishability-based security.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要