Explaining text classifiers through progressive neighborhood approximation with realistic samples

arxiv(2023)

引用 0|浏览37
暂无评分
摘要
The importance of neighborhood construction in local explanation methods has been already highlighted in the literature. And several attempts have been made to improve neighborhood quality for high-dimensional data, for example, texts, by adopting generative models. Although the generators produce more realistic samples, the intuitive sampling approaches in the existing solutions leave the latent space underexplored. To overcome this problem, our work, focusing on local model-agnostic explanations for text classifiers, proposes a progressive approximation approach that refines the neighborhood of a to-be-explained decision with a careful two-stage interpolation using counterfactuals as landmarks. We explicitly specify the two properties that should be satisfied by generative models, the reconstruction ability and the locality-preserving property, to guide the selection of generators for local explanation methods. Moreover, noticing the opacity of generative models during the study, we propose another method that implements progressive neighborhood approximation with probability-based editions as an alternative to the generator-based solution. The explanation results from both methods consist of word-level and instance-level explanations benefiting from the realistic neighborhood. Through exhaustive experiments, we qualitatively and quantitatively demonstrate the effectiveness of the two proposed methods.
更多
查看译文
关键词
text classifiers,progressive neighborhood
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要