Multi-Strategy Improved Sparrow Search Algorithm and Application

Xiangdong Liu,Yan Bai, Cunhui Yu, Hailong Yang, Haoning Gao,Jing Wang, Qing Chang,Xiaodong Wen

MATHEMATICAL AND COMPUTATIONAL APPLICATIONS(2022)

引用 4|浏览0
暂无评分
摘要
The sparrow search algorithm (SSA) is a metaheuristic algorithm developed based on the foraging and anti-predatory behavior of sparrow populations. Compared with other metaheuristic algorithms, SSA also suffers from poor population diversity, has weak global comprehensive search ability, and easily falls into local optimality. To address the problems whereby the sparrow search algorithm tends to fall into local optimum and the population diversity decreases in the later stage of the search, an improved sparrow search algorithm (PGL-SSA) based on piecewise chaotic mapping, Gaussian difference variation, and linear differential decreasing inertia weight fusion is proposed. Firstly, we analyze the improvement of six chaotic mappings on the overall performance of the sparrow search algorithm, and we finally determine the initialization of the population by piecewise chaotic mapping to increase the initial population richness and improve the initial solution quality. Secondly, we introduce Gaussian difference variation in the process of individual iterative update and use Gaussian difference variation to perturb the individuals to generate a diversity of individuals so that the algorithm can converge quickly and avoid falling into localization. Finally, linear differential decreasing inertia weights are introduced globally to adjust the weights so that the algorithm can fully traverse the solution space with larger weights in the first iteration to avoid falling into local optimum, and we enhance the local search ability with smaller weights in the later iteration to improve the search accuracy of the optimal solution. The results show that the proposed algorithm has a faster convergence speed and higher search accuracy than the comparison algorithm, the global search capability is significantly enhanced, and it is easier to jump out of the local optimum. The improved algorithm is also applied to the Heating, Ventilation and Air Conditioning (HVAC) system control optimization direction, and the improved algorithm is used to optimize the parameters of the HVAC system Proportion Integral Differential (PID) controller. The results show that the PID controller optimized by the improved algorithm has higher control accuracy and system stability, which verifies the feasibility of the improved algorithm in practical engineering applications.
更多
查看译文
关键词
sparrow search algorithm,HVAC,PID controller,parameter optimization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要