Stress and Corrosion Defect Identification in Weak Magnetic Leakage Signals Using Multi-Graph Splitting and Fusion Graph Convolution Networks

MACHINES(2023)

引用 0|浏览0
暂无评分
摘要
Weak magnetic flux leak detection is one of the most important non-destructive testing and measurement methods for pipelines. Since different defects cause different damage, it is necessary to classify the different types of defects. Traditional machine learning methods of defect type identification mainly use feature analysis methods and rely on expert a priori knowledge and the ability of designers. These methods have the following weaknesses: a priori knowledge needs to be designed iteratively, and a priori knowledge design relies on expert experience. In recent years, the rapid development of deep learning methods in the field of machine vision has led to the development of defect analysis in the industry. However, most deep learning methods lack the ability to analyze both detailed information and the overall structure. In this paper, we propose graph convolution networks for splitting and fusing multiple graphs of detail graphs and a root graph. Detail information (detail graphs) provides detailed information for the detection of WMFLs. The structure information (root graph) provides structural information for the detection of WMFLs. This paper uses simulation data and experimental data to verify that the proposed method can identify stress defects and corrosion defects well. The paper explains the experimental results in detail to demonstrate the superiority of the method in industrial methods.
更多
查看译文
关键词
graph convolutional networks (GCNs),stress defects of corrosion defects,weak magnetic flux leakages,non-destructive testing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要