Sustainable Aromatic Production from Catalytic Fast Pyrolysis of 2-Methylfuran over Metal-Modified ZSM-5

CATALYSTS(2022)

引用 0|浏览6
暂无评分
摘要
The catalytic fast pyrolysis (CFP) of bio-derived furans offers a promising approach for sustainable aromatic production. ZSM-5 modified by different metal species (Zn, Mo, Fe, and Ga) was employed in the CFP of bio-derived furans for enhancing aromatic production. The effects of metal species, metal loadings, and the weight hourly space velocity (WHSV) on the product distributions from the CFP of 2-methylfuran (MF) were systemically investigated. It is found that the introduction of Zn, Mo, Fe, and Ga on ZSM-5 significantly increases the MF conversion and aromatic yields. The maximum MF conversions of 75.49 and 69.03% are obtained, respectively, by Fe-ZSM-5 and Ga-ZSM-5, which boost the aromatic yield by 34.5 and 42.7% compared to ZSM-5. The optimal loading of Fe on ZSM-5 is 2%. Additionally, the highest aromatic yield of 40.03% is achieved by 2%Fe-ZSM-5 at a WHSV of 2 h(-1). The catalyst characterization demonstrates that the synergistic effect of Bronsted and Lewis acid sites in Fe-ZSM-5 is responsible for achieving the efficient aromatization of MF. The key to designing improved zeolite catalysts for MF aromatization is the introduction of large numbers of new Lewis acid sites without a significant loss of Bronsted acid sites in ZSM-5. These findings can provide guidelines for the rational design of better zeolite catalysts used in the CFP of biomass and its derived furans.
更多
查看译文
关键词
biomass,bio-derived furan,aromatization,ZSM-5,catalyst design
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要