Discontinuous Galerkin integral equation method for light scattering from complex nanoparticle assemblies

Optics express(2023)

引用 0|浏览12
暂无评分
摘要
This paper presents a discontinuous Galerkin (DG) integral equation (IE) method for the electromagnetic analysis of arbitrarily-shaped plasmonic assemblies. The use of nonconformal meshes provides improved flexibility for CAD prototyping and tessellation of the input geometry. The formulation can readily address nonconformal multi-material junctions (where three or more material regions meet), allowing to set very different mesh sizes depending on the material properties of the different subsystems. It also enables the use of h-refinement techniques to improve accuracy without burdening the computational cost. The continuity of the equivalent electric and magnetic surface currents across the junction contours is enforced by a combination of boundary conditions and local, weakly imposed, interior penalties within the junction regions. A comprehensive study is made to compare the performance of different IE-DG alternatives applied to plasmonics. The numerical experiments conducted validate the accuracy and versatility of this formulation for the resolution of complex nanoparticle assemblies.
更多
查看译文
关键词
discontinuous galerkin,complex nanoparticle assemblies,integral equation method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要