Heart failure (HF) alters distribution and spatial association profiles of calmodulin (CaM) and CaM target protein mRNAs

Biophysical Journal(2023)

引用 0|浏览6
暂无评分
摘要
Aberrant Ca-CaM signaling has been implicated in various congenital and acquired cardiac pathologies, including arrhythmia, hypertrophy, and HF. We examined the impact of HF induced by trans-aortic constriction (TAC) on the distribution of the three CaM mRNAs (Calm 1,2 and 3) and their key protein target mRNAs (Ryr2, Scn5a, Camk2d, NOS1 and Cacna1c) in cardiomyocytes, using fluorescence in situ hybridization (RNAScope™). HF resulted in specific changes in the pattern of localization of Calms, manifested in redistribution of Calm3 from the cell periphery towards the perinuclear area and enhanced Calm2 attraction to the perinuclear area compared to sham myocytes. Additionally, HF resulted in redistribution of mRNAs for certain CaM target mRNAs. Particularly, NOS1 localization shifted from the cell periphery towards the perinuclear area, Cacna1c, Camk2d and Scn5a abundance increased at the perinuclear area, and Ryr2 attracted even closer to the cell periphery in HF myocytes compared to sham myocytes. The strength of non-random attraction/repulsion was measured as the maximal deviation between the observed distribution of nearest neighbor distances from the distribution predicted under complete spatial randomness. Consistent with the observed alterations in abundance and distribution of CaM and CaM target mRNAs, HF resulted in increased attraction between Calm1 and Scn5a, Ryr2 and Camk2d, between Calm2 and Ryr2 and Camk2d; and between Calm3 and NOS1 and Scn5a. In contrast, the attraction between Calm3 and Ryr2 decreased in HF myocytes compared to sham. Collectively, these results suggest distribution of Calms and their association with key target protein mRNAs undergo substantial alterations in heart failure. These results have new important implications for organization of Ca signaling in normal and diseased heart.
更多
查看译文
关键词
heart failure,calmodulin,protein
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要