Organizational Modes of Spring and Summer Convective Storms and Associated Severe Weather over Southern China during 2015-19

MONTHLY WEATHER REVIEW(2022)

引用 1|浏览6
暂无评分
摘要
This study investigates the organizational modes of convective storms and associated severe weather in spring and summer (March-August) of 2015-19 over southern China. These storms are classified into three major organizational structures (cellular, linear, and nonlinear), including 10 dominant morphologies. In general, cellular systems are most frequent, followed by linear systems. Convective storms are common in spring, increasing markedly from April to June, and peak in June. Convective storm cases are usually longer lived in spring, while shorter lived in summer. They also present pronounced diurnal variations, with a primary peak in the afternoon and several secondary peaks during the night to the morning. Approximately 79.7% of initial convection clearly exhibits a dominant eastward movement, with a faster moving speed in spring. Convective storms frequently evolve among organizational modes during their life spans. Linear systems produce the most severe weather observations, in which convective lines with trailing stratiform rain are most prolific. Bow echoes are most efficient in producing severe weather events among all systems, despite their rare occurrences. In spring, lines with parallel stratiform rain are abundant producers of severe wind events, ranking the second highest probability. In summer, embedded lines produce the second largest proportion of intense rainfall events, whereas lines with leading stratiform rain are most efficient in generating extremely intense rainfall and thus pose a distinct flooding threat. Broken lines produce the largest proportion of severe weather events among cellular storms. In contrast, nonlinear systems possess the weakest capability to produce severe weather events. Significance StatementUnder the influence of the East Asian summer monsoon, severe weather events produced by convective storms occur frequently in China, leading to serious natural disasters. Numerous studies have demonstrated that the morphologies of convective storms are helpful to improve our understanding and prediction of convective storms. However, fewer attempts have been made to examine the convective morphologies over southern China. We aim to reveal the general features of convective organizational modes (e.g., frequencies, durations, variations, etc.) and determine which particular types of severe weather are more or less likely to be associated with particular convective morphologies. These results are of benefit to local forecasters for better anticipating the storm types and issuing warnings for related hazardous weather.
更多
查看译文
关键词
Convective storms,Mesoscale systems,Severe storms,Radars,Radar observations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要