A Bioanalytical Method for Quantification of N-nitrosodimethylamine (NDMA) in Human Plasma and Urine with Different Meals and following Administration of Ranitidine.

Journal of pharmaceutical sciences(2023)

引用 0|浏览16
暂无评分
摘要
Control of N-nitrosoamine impurities is important for ensuring the safety of drug products. Findings of nitrosamine impurities in some drug products led FDA to develop new guidance providing recommendations for manufacturers towards prevention and detection of nitrosamine impurities in pharmaceutical products. One of these products, ranitidine, also had a published in vivo study, which has since been retracted by its authors, suggesting a potential for in vivo conversion of ranitidine to the probable human carcinogen, N-nitrosodimethylamine (NDMA). FDA subsequently initiated a randomized, double-blind, placebo-controlled, crossover clinical investigation to assess the potential for in vivo conversion of ranitidine to NDMA with different meals. A bioanalytical method toward characterization of NDMA formation was needed as previously published methods did not address potential NDMA formation after biofluid collection. Therefore, a bioanalytical method was developed and validated as per FDA's Bioanalytical Method Validation guidance. An appropriate surrogate matrix for calibration standards and quality control sample preparation for both liquid matrices (human plasma and urine) was optimized to minimize the artifacts of assay measurements and monitor basal NDMA levels. Interconversion potential of ranitidine to NDMA was monitored during method validation by incorporating the appropriate quality control samples. The validated methods for NDMA were linear from 15.6 pg/mL to 2000 pg/mL. Low sample volumes (2 mL for urine and 1 mL for plasma) made this method suitable for clinical study samples and helped to evaluate the influence of ranitidine administration and meal types on urinary excretion of NDMA in human subjects.
更多
查看译文
关键词
Bioanalytical,LC-MS/MS,Method validation,N-nitrosodimethylamine,NDMA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要