Scaling Logical Density of DNA storage with Enzymatically-Ligated Composite Motifs

Yiqing YAN, Nimesh Pinnamaneni,Sachin Chalapati, Conor Crosbie,Raja Appuswamy

Scientific Reports(2023)

引用 1|浏览13
暂无评分
摘要
DNA is a promising candidate for long-term data storage due to its high density and endurance. The key challenge in DNA storage today is the cost of synthesis. In this work, we propose composite motifs, a framework that uses a mixture of prefabricated motifs as building blocks to reduce synthesis cost by scaling logical density. To write data, we introduce Bridge Oligonucleotide Assembly, an enzymatic ligation technique for synthesizing oligos based on composite motifs. To sequence data, we introduce Direct Oligonucleotide Sequencing, a nanopore-based technique to sequence oligos without assembly and amplification. To decode data, we introduce Motif-Search, a novel consensus caller that provides accurate reconstruction despite synthesis and sequencing errors. Using the proposed methods, we present an end-to-end experiment where we store the text 'HelloWorld' at a logical density of 84 bits/cycle (14-42x improvement over state-of-the-art.) ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要