Optimal decision trees for interpretable clustering with constraints

CoRR(2023)

Cited 0|Views39
No score
Abstract
Constrained clustering is a semi-supervised task that employs a limited amount of labelled data, formulated as constraints, to incorporate domain-specific knowledge and to significantly improve clustering accuracy. Previous work has considered exact optimization formulations that can guarantee optimal clustering while satisfying all constraints, however these approaches lack interpretability. Recently, decision trees have been used to produce inherently interpretable clustering solutions, however existing approaches do not support clustering constraints and do not provide strong theoretical guarantees on solution quality. In thiswork, we present a novel SAT-based framework for interpretable clustering that supports clustering constraints and that also provides strong theoretical guarantees on solution quality. We also present new insight into the trade-off between interpretability and satisfaction of such user-provided constraints. Our framework is the first approach for interpretable and constrained clustering. Experiments with a range of real-world and synthetic datasets demonstrate that our approach can produce high-quality and interpretable constrained clustering solutions.
More
Translated text
Key words
interpretable clustering,optimal decision trees,constraints
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined