New insight into the mechanisms of autochthonous fungal bioaugmentation of phenanthrene in petroleum contaminated soil by stable isotope probing

Journal of Hazardous Materials(2023)

引用 1|浏览10
暂无评分
摘要
Autochthonous fungal bioaugmentation (AFB) is considered a reliable bioremediation approach for polycyclic aromatic hydrocarbon (PAH) contamination, but little is known about its mechanisms in contaminated soils. Here, a microcosm experiment was performed to explore the AFB mechanisms associated with two highly efficient phenanthrene degrading agents of fungi (with laccase-producing Scedosporium aurantiacum GIG-3 and non-laccase-producing Aspergillus fumigatus LJD-29), using stable-isotope-probing (SIP) and high-throughput sequencing. The results showed that each fungus markedly improved phenanthrene removal, and microcosms with both fungi exhibited the best phenanthrene removal performance among all microcosms. Additionally, AFB markedly shifted the composition of the microbial community, particularly the phenanthrene-degrading bacterial taxa. Interestingly, based on SIP results, strains GIG-3 and LJD-29 did not assimilate phenanthrene directly during AFB, but instead played key roles in the preliminary decomposition of phenanthrene though secretion of different extracellular enzymes to oxidize the benzene ring (GIG-3 bioaugmentation with laccase, and LJD-29 bioaugmentation with manganese and lignin peroxidases). In addition, all functional degraders directly involved in phenanthrene assimilation were indigenous bacteria, while native fungi rarely participated in the direct phenanthrene mineralization. Our findings provide a new mechanism of AFB with multiple fungi, and support AFB as a promising strategy for the in situ bioremediation of PAH-contaminated soil.
更多
查看译文
关键词
Autochthonous fungal bioaugmentation,Polycyclic aromatic hydrocarbons,Functional microorganisms,DNA-SIP,Extracellular enzymes
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要