Microbial biotransformation mechanisms of PFPiAs in soil unveiled by metagenomic analysis

Journal of hazardous materials(2023)

引用 0|浏览10
暂无评分
摘要
As alternatives of long-chain PFASs (Poly- and perfluoroalkyl substances), perfluoroalkyl phosphinic acids (PFPiAs) are increasingly observed in the environment, but their environmental behaviors have not been well understood. Here, the microbial biotransformation of C6/C6 and C8/C8 PFPiA in two soils (Soil N and Y) was investigated. After 252 d and 330 d of incubation with PFPiAs in Soil N and Y respectively, the levels of PFPiAs decreased distinctly, accompanied by the increasing perfluorohexaphosphonic acid (PFHxPA) or perfluorooctanophosphonic acid (PFOPA) formation, magnifying PFPiAs were susceptible to C-P cleavage, which was also confirmed by the density functional theory calculations. The half-lives of the PFPiAs were longer than one year, while generally shorter in Soil N than in Soil Y and that of C6/C6 was shorter than C8/C8 PFPiA (392 d and 746 d in Soil N, and 603 and 1155 d in Soil Y, respectively). Metagenomic sequencing analysis revealed that Proteobacteria as the primary host of the potential functional genes related to C-P bond cleavage might be the crucial phyla contributing to the biotransformation of PFPiAs. Meanwhile, the more intensive interactions between the microbes in Soil N consistently contribute to its greater capacity for transforming PFPiAs.
更多
查看译文
关键词
PFPiAs,Biotransformation,DFT,Potential functional gene,CP bond cleavage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要