Quadruple-star systems are not always nested triples: a machine learning approach to dynamical stability

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
The dynamical stability of quadruple-star systems has traditionally been treated as a problem involving two `nested' triples which constitute a quadruple. In this novel study, we employed a machine learning algorithm, the multi-layer perceptron (MLP), to directly classify 2+2 and 3+1 quadruples based on their stability (or long-term boundedness). The training data sets for the classification, comprised of $5\times10^5$ quadruples each, were integrated using the highly accurate direct $N$-body code MSTAR. We also carried out a limited parameter space study of zero-inclination systems to directly compare quadruples to triples. We found that both our quadruple MLP models perform better than a `nested' triple MLP approach, which is especially significant for 3+1 quadruples. The classification accuracies for the 2+2 MLP and 3+1 MLP models are 94% and 93% respectively, while the scores for the `nested' triple approach are 88% and 66% respectively. This is a crucial implication for quadruple population synthesis studies. Our MLP models, which are very simple and almost instantaneous to implement, are available on GitHub, along with Python3 scripts to access them.
更多
查看译文
关键词
gravitation, binaries: general, stars: kinematics and dynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要