The circadian clock is required for rhythmic lipid transport in Drosophila in interaction with diet and photic condition.

biorxiv(2023)

引用 0|浏览17
暂无评分
摘要
Modern lifestyle is often at odds with endogenously driven rhythmicity, which can lead to circadian disruption and metabolic syndrome. One signature for circadian disruption is a reduced or altered metabolite cycling in the circulating tissue reflecting the current metabolic status. Drosophila is a well-established model in chronobiology, but day-time dependent variations of transport metabolites in the fly circulation are poorly characterized. Here, we sampled fly hemolymph throughout the day and analysed diacylglycerols (DGs), phosphoethanolamines (PEs) and phosphocholines (PCs) using LC-MS. In wildtype flies kept on sugar-only medium under a light-dark cycle, all transport lipid species showed a synchronized bimodal oscillation pattern with maxima at the beginning and end of the light phase which were impaired in period clock mutants. In wildtype flies under constant dark conditions, the oscillation became monophasic with a maximum in the middle of the subjective day. In strong support of clock-driven oscillations, levels of DGs, PEs and PCs peaked once in the middle of the light phase under time-restricted feeding independent of the time of food intake. When wildtype flies were reared on full standard medium, the rhythmic alterations of hemolymph lipid levels were greatly attenuated. Our data suggest that the circadian clock aligns daily oscillations of DGs, PEs and PCs in the hemolymph to the anabolic siesta phase, with a strong influence of light on phase and modality. This finding raises the question of whether and to what extent the circadian regulation of transport lipid levels in the hemolymph contributes to the health of the fly.
更多
查看译文
关键词
hemolymph lipids,lipidomics,circadian rhythm,feeding,locomotor activity,light-driven metabolism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要