Phenotype Switching and the Melanoma Microenvironment; Impact on Immunotherapy and Drug Resistance.

International journal of molecular sciences(2023)

引用 5|浏览19
暂无评分
摘要
Melanoma, a highly heterogeneous tumor, is comprised of a functionally diverse spectrum of cell phenotypes and subpopulations, including stromal cells in the tumor microenvironment (TME). Melanoma has been shown to dynamically shift between different transcriptional states or phenotypes. This is referred to as phenotype switching in melanoma, and it involves switching between quiescent and proliferative cell cycle states, and dramatic shifts in invasiveness, as well as changes in signaling pathways in the melanoma cells, and immune cell composition in the TME. Melanoma cell plasticity is associated with altered gene expression in immune cells and cancer-associated fibroblasts, as well as changes in extracellular matrix, which drive the metastatic cascade and therapeutic resistance. Therefore, resistance to therapy in melanoma is not only dependent on genetic evolution, but it has also been suggested to be driven by gene expression changes and adaptive phenotypic cell plasticity. This review discusses recent findings in melanoma phenotype switching, immunotherapy resistance, and the balancing of the homeostatic TME between the different melanoma cell subpopulations. We also discuss future perspectives of the biology of neural crest-like state(s) in melanoma.
更多
查看译文
关键词
MITF,epithelial–mesenchymal transition,heterogeneity,immunotherapy,melanoma,phenotypic plasticity,resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要