A Novel Feeder-level Microgrid Unit Commitment Algorithm Considering Cold-load Pickup, Phase Balancing, and Reconfiguration

arxiv(2023)

引用 0|浏览15
暂无评分
摘要
This paper presents a novel 2-stage microgrid unit commitment (Microgrid-UC) algorithm considering cold-load pickup (CLPU) effects, three-phase load balancing requirements, and feasible reconfiguration options. Microgrid-UC schedules the operation of switches, generators, battery energy storage systems, and demand response resources to supply 3-phase unbalanced loads in an islanded microgrid for multiple days. A performance-based CLPU model is developed to estimate additional energy needs of CLPU so that CLPU can be formulated into the traditional 2-stage UC scheduling process. A per-phase demand response budget term is added to the 1st stage UC objective function to meet 3-phase load unbalance limits. To reduce computational complexity in the 1st stage UC, we replace the spanning tree method with a feasible reconfiguration topology list method. The proposed algorithm is developed on a modified IEEE 123-bus system and tested on the real-time simulation testbed using actual load and PV data. Simulation results show that Microgrid-UC successfully accounts for CLPU, phase imbalance, and feeder reconfiguration requirements.
更多
查看译文
关键词
phase balancing,feeder-level,cold-load
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要