CRISPR Cas12a-Powered Silicon Surface-Enhanced Raman Spectroscopy Ratiometric Chip for Sensitive and Reliable Quantification.

Analytical chemistry(2023)

引用 4|浏览12
暂无评分
摘要
Sensitive and reliable clustered regularly interspaced short palindromic repeats (CRISPR) quantification without preamplification of the sample remains a challenge. Herein, we report a CRISPR Cas12a-powered silicon surface-enhanced Raman spectroscopy (SERS) ratiometric chip for sensitive and reliable quantification. As a proof-of-concept application, we select the platelet-derived growth factor-BB (PDGF-BB) as the target. We first develop a microfluidic synthetic strategy to prepare homogeneous silicon SERS substrates, in which uniform silver nanoparticles (AgNPs) are grown on a silicon wafer (AgNPs@Si) by microfluidic galvanic deposition reactions. Next, one 5'-SH-3'-ROX-labeled single-stranded DNA (ssDNA) is modified on AgNPs Ag-S bonds. In our design, such ssDNA has two fragments: one fragment hybridizes to its complementary DNA (5'-Cy3-labeled ssDNA) to form double-stranded DNA (dsDNA) and the other fragment labeled with 6'-carboxy-X-rhodmine (ROX) extends out as a substrate for Cas12a. The cleavage of the ROX-tagged fragment by Cas12a is controlled by the presence or not of PDGF-BB. Meanwhile, Cy3 molecules serving as internal standard molecules still stay at the end of the rigid dsDNA, and their signals remain constant. Thereby, the ratio of ROX signal intensity to Cy3 intensity can be employed for the reliable quantification of PDGF-BB concentration. The developed chip features an ultrahigh sensitivity (e.g., the limit of detection is as low as 3.2 pM, approximately 50 times more sensitive than the fluorescence counterpart) and good reproducibility (e.g., the relative standard deviation is less than 5%) in the detection of PDGF-BB.
更多
查看译文
关键词
raman,silicon,a-powered,surface-enhanced
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要