Mechanistic insights into the crystallization of coamorphous drug systems.

Journal of controlled release : official journal of the Controlled Release Society(2023)

引用 1|浏览7
暂无评分
摘要
In our previous study, the coamorphous formulation of lurasidone hydrochloride (LH) with saccharin (SAC) showed significantly enhanced dissolution and physical stability compared to crystalline/amorphous LH. However, the coamorphous system is still in amorphous state, and has the tendency to recrystallization, which will in turn result in the loss of above advantages. In this study, the crystallization kinetics under isothermal and non-isothermal conditions was investigated. Compared to amorphous LH, coamorphous LH-SAC showed 68.3-361.2 and 2.6-6.1 times lower crystallization rates in glassy state and supercooled liquid state, respectively. After co-amorphization, the addition of SAC changed the crystallization mechanism of amorphous LH from nucleation-controlled to diffusion-controlled manner. Amorphous LH followed the site saturation nucleation, whereas the coamorphous system exhibited a fixed number of nuclei. The non-isothermal crystallization indicated amorphous LH and coamorphous LH-SAC showed two-dimensional (JMAEK 2) and three-dimensional (JMAEK 3) growth of nuclei, respectively. Furthermore, coamorphous LH-SAC exhibited higher molecular mobility and dynamic fragility (m) than amorphous LH, which is kinetically unfavorable for its physical stability. However, from thermodynamic perspective, coamorphous LH-SAC had a higher configurational entropy, i.e., a higher entropy barrier for crystallization, which is beneficial to hinder its crystallization. Therefore, it was concluded that the higher configurational entropy rather than the molecular mobility was proposed to be responsible for its improved stability. In addition, molecular dynamics simulations with miscibility, radial distribution function and binding energy calculations suggested coamorphous components exhibited good miscibility and strong intermolecular interactions, which also was conductive to the enhancement in its stability. This study offers an in-depth understanding about the effect of the coformer on the crystallization kinetics of coamorphous systems, and points out the important contribution of the configurational entropy in stabilizing the coamorphous systems.
更多
查看译文
关键词
Coamorphous system,Configurational entropy,Crystallization kinetics,Lurasidone hydrochloride,Molecular mobility,Saccharin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要