Polarimetry of Hydrogen-Poor Superluminous Supernovae

arxiv(2023)

引用 2|浏览38
暂无评分
摘要
We present linear polarimetry for seven hydrogen-poor superluminous supernovae (SLSNe-I). For SN 2017gci, for which we present two epochs of spectropolarimetry at +3 d and +29 d post-peak in rest frame, accompanied by four epochs of imaging polarimetry up to +108 d. The spectropolarimetry at +3 d shows increasing polarisation degree P towards the redder wavelengths and exhibits signs of axial symmetry, but at +29 d P=0 throughout the spectrum implying that the photosphere of SN 2017gci evolved from a slightly aspherical configuration to a more spherical one in the first month post-peak. However, an increase of P to 0.5% at +55 d accompanied by a different orientation of the axial symmetry compared to +3 d implies the presence of additional sources of polarisation at this phase. The increase in polarisation is possibly caused by interaction with circumstellar matter as already suggested by a knee in the light curve and a possible detection of broad Ha emission. We also analysed the sample of all 16 SLSNe-I with polarimetry to date. The data taken during the early spectroscopic phase show consistently low P indicating spherical photospheres. No clear relation between the polarimetry and spectral phase was seen when the spectra resemble Type Ic SNe during the photospheric and nebular phases. The light curve decline rate also shows no clear relation with the polarisation properties. While only slow-evolving SLSNe-I have shown non-zero P, the fast-evolving ones have not been observed at sufficiently late times to conclude that none of them exhibit changing P. However, the four SLSNe-I with increasing polarisation degree also have irregular light curve declines. For up to half of them, the photometric, spectroscopic and polarimetric properties are affected by CSM interaction. As such CSM interaction clearly plays an important role in understanding the polarimetric evolution of SLSNe-I.
更多
查看译文
关键词
hydrogen-poor
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要