Building Scalable Video Understanding Benchmarks through Sports
arxiv(2023)
摘要
Existing benchmarks for evaluating long video understanding falls short on two critical aspects, either lacking in scale or quality of annotations. These limitations arise from the difficulty in collecting dense annotations for long videos, which often require manually labeling each frame. In this work, we introduce an automated Annotation and Video Stream Alignment Pipeline (abbreviated ASAP). We demonstrate the generality of ASAP by aligning unlabeled videos of four different sports with corresponding freely available dense web annotations (i.e. commentary). We then leverage ASAP scalability to create LCric, a large-scale long video understanding benchmark, with over 1000 hours of densely annotated long Cricket videos (with an average sample length of ~50 mins) collected at virtually zero annotation cost. We benchmark and analyze state-of-the-art video understanding models on LCric through a large set of compositional multi-choice and regression queries. We establish a human baseline that indicates significant room for new research to explore. Our human studies indicate that ASAP can align videos and annotations with high fidelity, precision, and speed. The dataset along with the code for ASAP and baselines can be accessed here: https://asap-benchmark.github.io/.
更多查看译文
AI 理解论文
溯源树
样例

生成溯源树,研究论文发展脉络
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn