Microlensing sheds light on the detection of strong lensing gravitational waves

arxiv(2023)

引用 0|浏览8
暂无评分
摘要
The strong lensing gravitational wave (SLGW) is a promising transient phenomenon containing rich physics. However, the poor sky localization due to the long-wave nature of gravitational waves makes the identification of such events very challenging. We propose a new method based on the wave optics effect of the microlensing field embedded in SLGW data. The microlensing diffraction/interference fringes can produce frequency-dependent random fluctuations in the waveform. To pin down the microlensing induced stochastic features in the waveform, we utilize both the template-independent method, \texttt{cWB}, and the template-dependent method, \texttt{Bilby}, to reconstruct the waveform with and without microlensing imprints. The mismatching degree of these two waveforms can be treated as an indicator of SLGW events. We forecast the identification rate of this method with the third-generation gravitational wave observatory, such as Cosmic Explorer. Our result shows that this method can successfully identify about 2 (out of 180) SLGW events with strong enough microlensing effect per year. This method is entirely data-driven, which is immune to model priors, and can greatly avoid the false positive errors contaminated by the coincident unlensed events.
更多
查看译文
关键词
gravitational waves
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要