Targeting soluble epoxide hydrolase promotes osteogenic-angiogenic coupling via activating SLIT3/HIF-1 alpha signalling pathway

Cell proliferation(2023)

引用 1|浏览4
暂无评分
摘要
Type H vessels have recently been identified to modulate osteogenesis. Epoxyeicostrioleic acids (EETs) have an essential contribution to vascular homeostasis. However, whether increased EETs with soluble epoxide hydrolase (sEH) inhibitor TPPU enhance the coupling of angiogenesis and osteogenesis remains largely unknown. The effects of TPPU on cross-talk between co-cultured human umbilical vein endothelial cells (HUVECs) and human dental pulp stem cells (hDPSCs), and on long bone growth and calvarial defect repair in mice were investigated in vitro and in vivo. TPPU enhanced osteogenic differentiation of co-cultured HUVECs and hDPSCs in vitro and increased type H vessels, and long bone growth and bone repair of calvarial defect. Mechanistically, TPPU promoted cell proliferation and angiogenesis, reclined cell apoptosis, and significantly increased CD31(hi)EMCN(hi) endothelial cells (ECs) and SLIT3 and HIF-1 alpha expression levels in co-cultured HUVECs and hDPSCs. Knockdown of Slit3 in hDPSCs or Hif-1 alpha in HUVECs impaired the formation of CD31(hi)EMCN(hi) ECs and reversed TPPU-induced osteogenesis. We defined a previously unidentified effect of TPPU coupling angiogenesis and osteogenesis. TPPU induced type H vessels by upregulating the expression of hDPSCs-derived SLIT3, which resulted in the activation of ROBO1/YAP1/HIF-1 alpha signalling pathway in ECs. Targeting metabolic pathways of EETs represents a new strategy to couple osteogenesis and angiogenesis, sEH is a promising therapeutic target for bone regeneration and repair.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要