Consistency and Discrepancy between Visibility and PM 2.5 Measurements: Potential Application of Visibility Observation to Air Quality Study.

Sensors(2023)

引用 0|浏览4
暂无评分
摘要
High-quality measurements of air quality are the highest priority for understanding widespread air pollution. Visibility has been widely suggested to be a good alternative to PM2.5 concentration as a measure. In this study, the similarities and differences between visibility and PM2.5 measurements in China are checked and the results reveal the potential application of visibility observation to the study of air quality. Based on the quality-controlled PM2.5 and visibility data from 2016 to 2018, the nonparametric Spearman correlation coefficient (ρ) values between stations for PM2.5 and visibility-derived surface extinction coefficient (bext) decrease as the station distance (R) increases. Some relatively low ρ values (<0.4) occur in regions characterized by the lowest (background) levels of PM2.5 and bext values, for example, the Tibetan and Yungui Plateau. The relatively lower ρ for bext compared to PM2.5 is probably caused by the predefined maximum threshold of visibility measurements (generally 30 km). A significant correlation between PM2.5 and bext is derived in most stations and relatively larger ρ values are evident in eastern China (Northeast China excluded) and in winter (the national median ρ is 0.67). The abrupt changes in specific mass extinction efficiency (αext) imply a potentially large influence of alternation of visibility sensors or recalibrations on visibility measurements. The bext data are thereafter corrected by comparison to the reference measurements at the adjacent stations, which leads to a three-year quality assured of visibility and bext datasets.
更多
查看译文
关键词
PM2.5,abrupt changes,dataset,surface extinction coefficient,visibility
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要