Injectable hydroethanolic physical gels based on Codonopsis pilosula polysaccharide for sustained anticancer drug delivery.

International journal of biological macromolecules(2023)

引用 2|浏览4
暂无评分
摘要
The development of biocompatible carriers based on hydroethanolic physical gels for effectively encapsulating and delivering hydrophobic drug molecules is of particular interest. In this paper, we reported a novel hydroethanolic physical gel based on Codonopsis pilosula polysaccharide (CPP) prepared from the roots of C. pilosula. The gelation behaviors of the graded CPP fractions in a water-ethanol solvent system were evaluated, and the physicochemical and mechanical properties of the CPP-based gel (CPP-G) were characterized. The results indicated that CPP-G had consisted of a random physically crosslinked network formed by hydrophobic association of CPP chains and exhibited good mechanical strength, higher shear-thinning sensitivity and rapid, highly efficient self-recovering characteristics, ensuring superior performance in constructing injectable and self-recovering drug-loaded gels. Hydrophobic paclitaxel (PTX) and hydrophilic doxorubicin (DOX) were used as representative drugs to investigate the encapsulation and in vitro release behaviors of CPP-G, which exhibited long-term sustained release properties. Additionally, the evaluation of drug activity in drug-loaded gels further revealed the synergistic effect of CPP-G with the selected drugs on tumor inhibition against 4T1 and MCF-7 breast cancer cell lines. This work evaluated the feasibility of using the natural polysaccharide CPP to construct hydroethanolic physical gels and the applicability of the injectable drug-loaded gels for hydrophobic drug delivery.
更多
查看译文
关键词
Codonopsis pilosula polysaccharide,Hydroethanolic physical gels,Injectable and self-recovering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要