Effects of Warming on Microbial Community Characteristics in the Soil Surface Layer of Niaodao Wetland in the Qinghai Lake Basin

SUSTAINABILITY(2022)

引用 1|浏览0
暂无评分
摘要
Lakeshore wetlands are important terrestrial ecosystems worldwide, and the lakeshore wetlands of the Tibetan Plateau are sensitive to climate change. Therefore, in the context of global warming, studying the effects of temperature rise on surface soil microbial communities is essential for wetland biodiversity conservation. In this study, we used metagenomic sequencing to examine changes in the structure of surface soil microbial communities and their metabolic pathways in the Niaodao lakeshore wetland (NLW) in Qinghai Lake at 1.2 degrees C warming. Under natural control and warming conditions, Proteobacteria and Actinobacteria were the most dominant bacterial phyla, and Ascomycota and Basidiomycota were the predominant fungal phyla. Soil pH, electrical conductivity, and temperature affected the relative abundances of the dominant soil microbes. Effect size estimation in a linear discriminant analysis revealed 11 differential pathways between warming and natural conditions. Warming considerably enhanced the peptidoglycan biosynthetic pathways but inhibited the ATP-binding cassette transporter pathway. Warming treatment affected alpha-diversity indices, with an increase in the Shannon, Chao1, and richness indices and a decrease in the Simpson index compared with the index changes for the natural control conditions. Analysis of similarities showed significant differences between warming and control samples. Overall, temperature rise altered surface soil microbial community structure and increased surface soil microbial diversity and abundance in NLW.
更多
查看译文
关键词
Niaodao lakeshore wetland, simulated warming, soil, microorganisms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要