Temporal burstiness and collaborative camouflage aware fraud detection

Information Processing & Management(2023)

引用 4|浏览40
暂无评分
摘要
With the prosperity and development of the digital economy, many fraudsters have emerged on e-commerce platforms to fabricate fraudulent reviews to mislead consumers' shopping decisions for profit. Moreover, in order to evade fraud detection, fraudsters continue to evolve and present the phenomenon of adversarial camouflage and collaborative attack. In this paper, we propose a novel temporal burstiness and collaborative camouflage aware method (TBCCA) for fraudster detection. Specifically, we capture the hidden temporal burstiness features behind camouflage strategy based on the time series prediction model, and identify highly suspicious target products by assigning suspicious scores as node priors. Meanwhile, a propagation graph integrating review collusion is constructed, and an iterative fraud confidence propagation algorithm is designed for inferring the label of nodes in the graph based on Loop Belief Propagation (LBP). Comprehensive experiments are conducted to compare TBCCA with state -of-the-art fraudster detection approaches, and experimental results show that TBCCA can effectively identify fraudsters in real review networks with achieving 6%-10% performance improvement than other baselines.
更多
查看译文
关键词
Fraudster detection,Temporal burstiness,Collaborative camouflage,ARIMA model,Pairwise Markov Random Field
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要