Enhancing Lithium and Sodium Storage Properties of TiO2(B) Nanobelts by Doping with Nickel and Zinc

Nanomaterials(2021)

引用 0|浏览3
暂无评分
摘要
Nickel- and zinc-doped TiO2(B) nanobelts were synthesized using a hydrothermal technique. It was found that the incorporation of 5 at.% Ni into bronze TiO2 expanded the unit cell by 4%. Furthermore, Ni dopant induced the 3d energy levels within TiO2(B) band structure and oxygen defects, narrowing the band gap from 3.28 eV (undoped) to 2.70 eV. Oppositely, Zn entered restrictedly into TiO2(B), but nonetheless, improves its electronic properties (Eg is narrowed to 3.21 eV). The conductivity of nickel- (2.24 × 10−8 S·cm−1) and zinc-containing (3.29 × 10−9 S·cm−1) TiO2(B) exceeds that of unmodified TiO2(B) (1.05 × 10−10 S·cm−1). When tested for electrochemical storage, nickel-doped mesoporous TiO2(B) nanobelts exhibited improved electrochemical performance. For lithium batteries, a reversible capacity of 173 mAh·g−1 was reached after 100 cycles at the current load of 50 mA·g−1, whereas, for unmodified and Zn-doped samples, around 140 and 151 mAh·g−1 was obtained. Moreover, Ni doping enhanced the rate capability of TiO2(B) nanobelts (104 mAh·g−1 at a current density of 1.8 A·g−1). In terms of sodium storage, nickel-doped TiO2(B) nanobelts exhibited improved cycling with a stabilized reversible capacity of 97 mAh·g−1 over 50 cycles at the current load of 35 mA·g−1.
更多
查看译文
关键词
TiO<sub>2</sub>(B),doping,nanobelts,mesoporosity,lithium-ion battery,sodium storage
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要