Large Dispersive Interaction between a CMOS Double Quantum Dot and Microwave Photons

PRX Quantum(2021)

引用 0|浏览2
暂无评分
摘要
We report fast charge-state readout of a double quantum dot in a CMOS split-gate silicon nanowire transistor via the large dispersive interaction with microwave photons in a lumped-element resonator formed by hybrid integration with a superconducting inductor. We achieve a coupling rate g_{0}/(2π)=204±2MHz by exploiting the large interdot gate lever arm of an asymmetric split-gate device, α=0.72, and by inductively coupling to the resonator to increase its impedance, Z_{r}=560Ω. In the dispersive regime, the large coupling strength at the double quantum-dot hybridization point produces a frequency shift comparable to the resonator linewidth, the optimal setting for maximum state visibility. We exploit this regime to demonstrate rapid dispersive readout of the charge degree of freedom, with a SNR of 3.3 in 50 ns. In the resonant regime, the fast charge decoherence rate precludes reaching the strong coupling regime, but we show a clear route to spin-photon circuit quantum electrodynamics using hybrid CMOS systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要