A Deep Learning-Based Framework for Retinal Disease Classification.

Healthcare (Basel, Switzerland)(2023)

引用 4|浏览22
暂无评分
摘要
This study addresses the problem of the automatic detection of disease states of the retina. In order to solve the abovementioned problem, this study develops an artificially intelligent model. The model is based on a customized 19-layer deep convolutional neural network called VGG-19 architecture. The model (VGG-19 architecture) is empowered by transfer learning. The model is designed so that it can learn from a large set of images taken with optical coherence tomography (OCT) and classify them into four conditions of the retina: (1) choroidal neovascularization, (2) drusen, (3) diabetic macular edema, and (4) normal form. The training datasets (taken from publicly available sources) consist of 84,568 instances of OCT retinal images. The datasets exhibit all four classes of retinal disease mentioned above. The proposed model achieved a 99.17% classification accuracy with 0.995 specificities and 0.99 sensitivity, making it better than the existing models. In addition, the proper statistical evaluation is done on the predictions using such performance measures as (1) area under the receiver operating characteristic curve, (2) Cohen's kappa parameter, and (3) confusion matrix. Experimental results show that the proposed VGG-19 architecture coupled with transfer learning is an effective technique for automatically detecting the disease state of a retina.
更多
查看译文
关键词
VGG-19 architecture,artificial intelligence,diseased state of retina,image processing,neural networks,performance analysis,transfer learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要