Single-Cell Transcriptome Identifies the Renal Cell Type Tropism of Human BK Polyomavirus.

International journal of molecular sciences(2023)

引用 1|浏览22
暂无评分
摘要
BK polyomavirus (BKPyV) infection is the main factor affecting the prognosis of kidney transplant recipients, as no antiviral agent is yet available. A better understanding of the renal-cell-type tropism of BKPyV can serve to develop new treatment strategies. In this study, the single-cell transcriptomic analysis demonstrated that the ranking of BKPyV tropism for the kidney was proximal tubule cells (PT), collecting duct cells (CD), and glomerular endothelial cells (GEC) according to the signature of renal cell type and immune microenvironment. In normal kidneys, we found that BKPyV infection-related transcription factors P65 and CEBPB were PT-specific transcription factors, and PT showed higher glycolysis/gluconeogenesis activities than CD and GEC. Furthermore, in the BKPyV-infected kidneys, the percentage of late viral transcripts in PT was significantly higher than in CD and GEC. In addition, PT had the smallest cell-cell interactions with immune cells compared to CD and GEC in both normal and BKPyV-infected kidneys. Subsequently, we indirectly demonstrated the ranking of BKPyV tropism via the clinical observation of sequential biopsies. Together, our results provided in-depth insights into the renal cell-type tropism of BKPyV in vivo at single-cell resolution and proposed a novel antiviral target.
更多
查看译文
关键词
BK polyomavirus,immune microenvironment,metabolism,multi-omics,single-cell transcriptomics,tropism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要