Evaluation of the distribution and mobility of labile phosphorus in sediment profiles of Lake Nansi, the largest eutrophic freshwater lake in northern China

Chemosphere(2023)

引用 4|浏览14
暂无评分
摘要
Understanding various biogeochemical processes, especially in eutrophic sediments, necessitates fine-scale phosphorus (P) measurements in pore waters. To the best of our knowledge, the fine-scale distributions of P across the sediment profiles of Lake Nansi have rarely been investigated. Herein we evaluated the dynamic distributions of labile P and Fe across the sediment-water interface (SWI) of Lake Nansi at two-dimensional (2D) and sub-millimeter resolution, using well-established colorimetric diffusive gradients in thin films (DGT) methodology. The concentrations of labile P in all investigated sediment profiles exhibited strong spatial variations, ranging from 0 to 1.50 mg/L with a considerable number of hotspots. Lake Nanyang (0.55 ± 0.21 mg/L) had the highest mean concentration of labile P, followed by Lake Dushan (0.38 ± 0.19 mg/L), Lake Weishan (0.28 ± 0.21 mg/L), and Lake Zhaoyang (0.18 ± 0.09 mg/L). The highest concentrations of labile P were always detected in Lake Dushan, which had been subjected to excessive exogenous P pollution. The co-distributions of labile P and Fe in the majority of the sediment of Lake Nansi confirmed highly positive correlations (P < 0.01), suggesting that the mobility of labile P throughout the SWI was likely governed by iron redox processes. The apparent diffusion fluxes of P across the SWI ranged from −7.7 to 33.6 μg/m2·d, with a mean value of 5.26 ± 7.80 μg/m2·d. Positive apparent fluxes for labile P were recorded in most sediment cores, demonstrating the strong upward mobility of P from the sediment to the overlying water. Our results provided accurate and extensive information regarding the micro-distribution and dynamic exchange of labile P across the SWI. This allows for a better understanding of eutrophication processes and the implementation of P management strategies in Lake Nansi.
更多
查看译文
关键词
Labile P,DGT,High resolution imaging,Iron cycle,SWI,Apparent diffusion flux
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要