Relationship between kinematic gait quality and caregiver-reported everyday mobility in children and youth with spastic Cerebral Palsy.

Matthias Hösl, Alexander Schupfinger, Luisa Klich, Linda Geest,Petra Bauer,Michaela V Bonfert, Faik K Afifi,Sean Nader,Steffen Berweck

European journal of paediatric neurology : EJPN : official journal of the European Paediatric Neurology Society(2022)

引用 0|浏览4
暂无评分
摘要
BACKGROUND:3D gait analysis (3DGA) is a common assessment in Cerebral Palsy (CP) to quantify the extent of movement abnormalities. Yet, 3DGA is performed in laboratories and may thus be of debatable significance to everyday life. AIM:The aim was to assess the relationship between kinematic gait abnormality and everyday mobility in ambulatory children and youth with spastic CP. METHODS:73 paediatric and juvenile patients with uni- or bilateral spastic CP (N = 21 USCP, N = 52, BSCP, age: 4-20 y, GMFCS I-III) underwent a 3DGA, while the MobQues47 Questionnaire quantified caregiver-reported mobility. We calculated the Gait Profile Score (GPS), a metric that summarizes how far the lower limb joint angles during walking deviate from those of matched controls. RESULTS:The GPS correlated well with indoor and outdoor mobility (rho = -0.69 and -0.70, both p < 0.001) and the relationships were not significantly different for USCP and BSCP. Still, mobility was lower in BSCP (p < 0.001) and more compromised outdoors (p = 0.002). Indoor mobility could be predicted by walking speed, GPS and age (adj. R2 = 0.62). Outdoor mobility was best predicted by walking speed and GPS (adj. R2 = 0.60). The additive explained variance by the GPS was even higher outdoors than indoors (17.1% vs. 11.4%). CONCLUSIONS:Measuring movement deviations with 3DGA seems equally meaningful in uni- and bilaterally affected children and has considerable relevance for real-life ambulation, particurlarly outdoors, where children with spastic CP typically face greater difficulties. Therapeutic strategies that achieve faster walking and reduction of kinematic deviations may increase outdoor mobility.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要