Device, Circuit, and System Design for Enabling Giga-Hertz Large-Area Electronics

IEEE Open Journal of the Solid-State Circuits Society(2022)

引用 1|浏览12
暂无评分
摘要
Recent progress has substantially increased the operating frequency of large-area electronic (LAE) devices. Their integration into circuits has enabled unprecedented system-level capabilities, toward future wireless applications for the Internet of Things (IoT) and 5G/6G. These exploit large dimensions and flexible form factors. In this work, we focus on giga-Hertz (GHz) zinc-oxide (ZnO) thin-film transistors (TFTs) as a foundational device for enabling GHz LAE circuits and systems. To further understand their operation and limits in the newly possible frequency regime, we incorporate the effects of temperature and of non-quasi-static (NQS) physics into the device models. We then analyze operation including these effects on a fundamental circuit block, the cross-coupled inductor-capacitor (LC) oscillator. It is used in representative LAE systems, namely, a 13.56-MHz radio-frequency identification (RFID) reader array for near-field energy transfer, and a 1-GHz phased array for far-field radiation beam steering. The co-design of devices, circuits, and systems is essential for achieving flexible and meter-scale monolithic-integrated LAE wireless systems. For these, understanding temperature limitations and the NQS effect is crucial.
更多
查看译文
关键词
5G/6G,Internet of Things (IoT),large-area electronics (LAEs),thin-film transistor (TFT),wireless communication
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要