Temperature effects on microbial dissolved organic matter metabolisms: Linking size fractions, fluorescent compositions, and functional groups.

The Science of the total environment(2022)

引用 3|浏览13
暂无评分
摘要
This study elucidated the compositional and structural variations of size fractions of microbially-induced dissolved organic matter (DOM) caused by short-term temperature changes (5 to 35 °C), taking riverine DOM as an example. A simple and efficient method combining fractionation-[parallel factor analysis and two-dimensional Fourier-transform infrared correlation spectroscopy (PARAFAC-2D FTIR COS)]-correlation was introduced to link fluorescent DOM components and their structures in terms of surface functional groups. Results indicated that the higher temperature stimulated the decomposition of aromatics (sizes decreased from 10 kDa-0.22 μm to <10 kDa) and the transformation of proteins to humics (with sizes <0.22 μm); while both the higher and lower temperatures inhibited the utilization of larger-sized DOM (>0.22 μm, especially the non-fluorescence part) and synthesis of larger-sized microbial-derived proteins and humics (>0.22 μm), which may result in more smaller-sized (<10 kDa) and refractory aromatics transported from rivers to oceans in the warming future. However, the structure-determined DOM behaviors could be less affected by temperature since the fluorescent proteins and humics revealed similar functional group compositions, such as carboxyl, hydroxyl, carbonyl/aldehyde, carboxylic anhydride, and carboxamide groups. These findings have strong implications for DOM biogeochemistry in future temperature-shock scenarios. The proposed method will support in-depth analyses of structure-regulated processes from a mechanistic perspective.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要