Pharmacological Optimization of PSMA-Based Radioligand Therapy.

Biomedicines(2022)

引用 7|浏览7
暂无评分
摘要
Prostate cancer (PCa) is the most common malignancy in men of middle and older age. The standard treatment strategy for PCa ranges from active surveillance in low-grade, localized PCa to radical prostatectomy, external beam radiation therapy, hormonal treatment and chemotherapy. Recently, the use of prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) for metastatic castration-resistant PCa has been approved. PSMA is predominantly, but not exclusively, expressed on PCa cells. Because of its high expression in PCa, PSMA is a promising target for diagnostics and therapy. To understand the currently used RLT, knowledge about pharmacokinetics (PK) and pharmacodynamics (PD) of the PSMA ligand and the PSMA protein itself is crucial. PK and PD properties of the ligand and its target determine the duration and extent of the effect. Knowledge on the concentration-time profile, the target affinity and target abundance may help to predict the effect of RLT. Increased specific binding of radioligands to PSMA on PCa cells may be associated with better treatment response, where nonspecific binding may increase the risk of toxicity in healthy organs. Optimization of the radioligand, as well as synergistic effects of concomitant agents and an improved dosing strategy, may lead to more individualized treatment and better overall survival.
更多
查看译文
关键词
PSMA,lutetium,optimization,pharmacodynamics,pharmacokinetics,prostate cancer,radioligand,theranostics,therapy,variability
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要