Accumulation, translocation, and transformation of two CdSe/ZnS quantum dots in rice and pumpkin plants.

The Science of the total environment(2022)

引用 2|浏览10
暂无评分
摘要
As a widely applied semiconductor nanomaterial, quantum dots (QDs) have drawn considerable interest. In this study, pumpkin and rice seedlings were hydroponically exposed to two core/shell CdSe/ZnS QDs coated with cysteamine (CdSe/ZnS-CA) and polyethylene glycol-carboxy (CdSe/ZnS-PEG-COOH) for 10 days to analyze their time-varying uptake, translocation, and transformation behaviors in plants. Both QDs were mainly adsorbed/absorbed by the roots in the particulate state, and more CdSe/ZnS-CA accumulated than CdSe/ZnS-PEG-COOH. For CdSe/ZnS-CA-treated plants, the Se and Cd concentrations (C and C) associated with the roots were 561 ± 75 and 580 ± 73 μg/g (dw) for rice and 474 ± 49 and 546 ± 53 μg/g (dw) for pumpkin, respectively, on day 10. For CdSe/ZnS-PEG-COOH-treated plants, the concentrations of Se and Cd associated with roots were 392 ± 56 and 453 ± 56 μg/g (dw) for rice and 363 ± 52 and 417 ± 52 μg/g (dw) for pumpkin, respectively. The surface charges and coatings significantly affected the accumulation of QDs at the beginning of exposure; however, the impaction decreased with time. The ratios between the Cd and Se concentrations (C/C) in the stems and leaves varied from those of the QD standards, indicating the transformation of the QDs in the exposure system. Se and Cd were more likely to translocate in CdSe/ZnS-PEG-COOH-treated plants than in CdSe/ZnS-CA-treated plants. The vertical translocation of Se was greater than that of Cd. Rice showed greater abilities of accumulation and translocation of Se and Cd from both QDs than pumpkin. These findings improve our understanding of the interference of QDs with plants and their environmental fate.
更多
查看译文
关键词
Environmental fate,Interactions,Plants,Quantum dots
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要