Off-Team Learning

NeurIPS 2022(2022)

引用 0|浏览43
暂无评分
摘要
Zero-shot coordination (ZSC) evaluates an algorithm by the performance of a team of agents that were trained independently under that algorithm. Off-belief learning (OBL) is a recent method that achieves state-of-the-art results in ZSC in the game Hanabi. However, the implementation of OBL relies on a belief model that experiences covariate shift. Moreover, during ad-hoc coordination, OBL or any other neural policy may experience test-time covariate shift. We present two methods addressing these issues. The first method, off-team belief learning (OTBL), attempts to improve the accuracy of the belief model of a target policy πT on a broader range of inputs by weighting trajectories approximately according to the distribution induced by a different policy πb. The second, off-team off-belief learning (OT-OBL), attempts to compute an OBL equilibrium, where fixed point error is weighted according to the distribution induced by cross-play between the training policy π and a different fixed policy πb instead of self-play of π. We investigate these methods in variants of Hanabi.
更多
查看译文
关键词
Multi-Agent Reinforcement Learning,Reinforcement Learning,Cooperative Multi-Agent Reinforcement Learning,Deep Reinforcement Learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要