Random linear estimation with rotationally-invariant designs: Asymptotics at high temperature

IEEE Transactions on Information Theory(2022)

引用 0|浏览8
暂无评分
摘要
We study estimation in the linear model $y=A\beta^\star+\epsilon$, in a Bayesian setting where $\beta^\star$ has an entrywise i.i.d. prior and the design $A$ is rotationally-invariant in law. In the large system limit as dimension and sample size increase proportionally, a set of related conjectures have been postulated for the asymptotic mutual information, Bayes-optimal mean squared error, and TAP mean-field equations that characterize the Bayes posterior mean of $\beta^\star$. In this work, we prove these conjectures for a general class of signal priors and for arbitrary rotationally-invariant designs $A$, under a "high-temperature" condition that restricts the range of eigenvalues of $A^\top A$. Our proof uses a conditional second-moment method argument, where we condition on the iterates of a version of the Vector AMP algorithm for solving the TAP mean-field equations.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要