A graphene-oxide-based aptasensor for fluorometric determination of chloramphenicol in milk and honey samples utilizing exonuclease III-assisted target recycling and Nb.BbvCI-powered DNA walker cascade amplification

Ecotoxicology and Environmental Safety(2023)

引用 1|浏览1
暂无评分
摘要
Herein, a graphene oxide (GO)-based fluorescence aptasensor was developed for the sensitive and selective detection of chloramphenicol (CAP), based on exonuclease III (Exo III)-assisted target recycling and Nb.BbvCI-driven DNA walker cascade amplification. Interactions between CAP, hairpin1(HP1), hairpin2 (HP2), and 3 '-amino modified hairpin3 (HP3) labeled with carboxyfluorescein (FAM) and covalently coupled to GO enabled efficient CAP detection. CAP was quantitatively assayed by measuring fluorescence at excitation/emission wavelengths of 480/514 nm, resulting from the accumulation of released FAM. A good linear range of 1 fM to 1 nM and a limit of detection (LOD) of 0.875 fM (signal-to-noise (S/N)= 3) were achieved. This aptasensor can distinguish the CAP from interference antibiotics with good specificity and selectivity, even if the concentration of the interfering substance is ten-fold higher than the target concentration. Moreover, the developed fluores-cence aptasensor was successfully applied for the detection of CAP in spiked milk and honey samples. Thus, this method is potentially applicable for assaying CAP in foods and provides a promising strategy for the development of fluorescence aptasensors for environmental sample analysis.
更多
查看译文
关键词
Fluorescence aptasensor,Chloramphenicol,Enzyme-assisted recycling amplification,Graphene oxide,Food safety
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要