Relationships between denitrification rates and functional gene abundance in a wetland: The roles of single- and multiple-species plant communities

SCIENCE OF THE TOTAL ENVIRONMENT(2023)

引用 0|浏览10
暂无评分
摘要
Wetland soil denitrification removes excess inorganic nitrogen (N) and prevents eutrophication in aquatic ecosystems. Wetland plants have been considered the key factors determining the capacity of wetland soil denitrification to remove N pollutants in aquatic ecosystems. However, the influences of various plant communities on wetland soil denitrifica-tion remain unknown. In the present study, we measured variations in soil denitrification under different herbaceous plant communities including single Phragmites karka (PK), single Paspalum thunbergia (PT), single Zizania latifolia (ZL), a mixture of Paspalum thunbergia plus Phragmites karka (PTPK), a mixture of Paspalum thunbergia plus Zizania latifolia (PTZL), and bare soil (CK) in the Estuary of Nantiaoxi River, the largest tributary of Qingshan Lake in Hangzhou, China. The soil denitrification rate was significantly higher in the surface (0-10 cm) than the subsurface (10-20 cm) layer. Wetland plant growth increased the soil denitrification rate by significantly increasing the soil water con-tent, nitrate concentration, and ln(nirS) + ln(nirK). A structural equation model (SEM) showed that wetland plants in-directly regulated soil denitrification by altering the aboveground and belowground plant biomass, nitrate concentration, abundances of denitrifying functional genes, and denitrification potential. There was no significant dif-ference in soil denitrification rates among PT, PK and ZL. The soil denitrification rate was significantly lower in PTZL than PTPK. Two-plant communities did not necessarily enhance the denitrification rate compared to single planting, the former had a greater competitiveness on N uptake and consequently reduced the amount of nitrate available for denitrification. As PTPK had the highest denitrification rate, co-planting P. thunbergia and P. karka could effectively improve N removal efficiency and help mitigate eutrophication in adjacent aquatic ecosystems. The results of this in-vestigation provide useful information guiding the selection of appropriate wetland herbaceous plant species for wet-land construction and the removal of N pollutants in aquatic ecosystems.
更多
查看译文
关键词
Wetland soil denitrification,Eutrophication,Two-plant communities,Single planting,Plant biomass
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要