Realization of the skyrmionic logic gates and diodes in the same racetrack with enhanced and modified edges

APPLIED PHYSICS LETTERS(2022)

引用 19|浏览15
暂无评分
摘要
Magnetic skyrmions are topological quasiparticles with nanoscale size and high mobility, which have potential applications in information storage and spintronic devices. Here, we computationally investigate the dynamics of isolated skyrmions in a ferromagnetic racetrack, where magnetic properties of the edges are enhanced and modified, forming a channel with lower magnetic anisotropy for skyrmion motion. It is found that the rectangular notch at the edge can have a pinning effect on the skyrmion and enrich the dynamics of the skyrmion. Based on the racetrack with modified edges and the notch, we design a racetrack that realizes the skyrmionic logic AND, OR, and NOT gates as well as the diode in the same magnetic racetrack. It is found that the driving current density could be much smaller than those used in previous designs of skyrmion-based logic gates. By slightly altering the shape of the racetrack, we also design the NAND and NOR gates. Finally, we study the feasibility of our design at finite temperatures. Our results may contribute to the design of nonvolatile spintronic devices with integrated multiple functions and ultra-low energy consumption. Published under an exclusive license by AIP Publishing.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要