# Faster Maximum Inner Product Search in High Dimensions

arxiv（2023）

摘要

Maximum Inner Product Search (MIPS) is a ubiquitous task in machine learning applications such as recommendation systems. Given a query vector and $n$ atom vectors in $d$-dimensional space, the goal of MIPS is to find the atom that has the highest inner product with the query vector. Existing MIPS algorithms scale at least as $O(\sqrt{d})$, which becomes computationally prohibitive in high-dimensional settings. In this work, we present BanditMIPS, a novel randomized MIPS algorithm whose complexity is independent of $d$. BanditMIPS estimates the inner product for each atom by subsampling coordinates and adaptively evaluates more coordinates for more promising atoms. The specific adaptive sampling strategy is motivated by multi-armed bandits. We provide theoretical guarantees that BanditMIPS returns the correct answer with high probability, while improving the complexity in $d$ from $O(\sqrt{d})$ to $O(1)$. We also perform experiments on four synthetic and real-world datasets and demonstrate that BanditMIPS outperforms prior state-of-the-art algorithms. For example, in the Movie Lens dataset ($n$=4,000, $d$=6,000), BanditMIPS is 20$\times$ faster than the next best algorithm while returning the same answer. BanditMIPS requires no preprocessing of the data and includes a hyperparameter that practitioners may use to trade off accuracy and runtime. We also propose a variant of our algorithm, named BanditMIPS-$\alpha$, which achieves further speedups by employing non-uniform sampling across coordinates. Finally, we demonstrate how known preprocessing techniques can be used to further accelerate BanditMIPS, and discuss applications to Matching Pursuit and Fourier analysis.

更多查看译文

AI 理解论文

溯源树

样例

生成溯源树，研究论文发展脉络

Chat Paper

正在生成论文摘要