RAGE activation in macrophages and development of experimental diabetic polyneuropathy.

JCI insight(2022)

引用 3|浏览0
暂无评分
摘要
It is suggested that activation of receptor for advanced glycation end products (RAGE) induces proinflammatory response in diabetic nerve tissues. Macrophage infiltration is invoked in the pathogenesis of diabetic polyneuropathy (DPN), while the association between macrophage and RAGE activation and the downstream effects of macrophages remain to be fully clarified in DPN. This study explored the role of RAGE in the pathogenesis of DPN through the modified macrophages. Infiltrating proinflammatory macrophages impaired insulin sensitivity, atrophied the neurons in dorsal root ganglion, and slowed retrograde axonal transport (RAT) in the sciatic nerve of type 1 diabetic mice. RAGE-null mice showed an increase in the population of antiinflammatory macrophages, accompanied by intact insulin sensitivity, normalized ganglion cells, and RAT. BM transplantation from RAGE-null mice to diabetic mice protected the peripheral nerve deficits, suggesting that RAGE is a major determinant for the polarity of macrophages in DPN. In vitro coculture analyses revealed proinflammatory macrophage-elicited insulin resistance in the primary neuronal cells isolated from dorsal root ganglia. Applying time-lapse recording disclosed a direct impact of proinflammatory macrophage and insulin resistance on the RAT deficits in primary neuronal cultures. These results provide a potentially novel insight into the development of RAGE-related DPN.
更多
查看译文
关键词
Diabetes,Endocrinology,Neurodegeneration,Neuroendocrine regulation,Neuroscience
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要