Charging Wearable Devices Through Natural Interactions with Instrumented Everyday Objects.

GetMobile: Mobile Computing and Communications(2022)

引用 2|浏览12
暂无评分
摘要
Recent advancements in semiconductor technologies have stimulated the growth of ultra-low power wearable devices. However, these devices often pose critical constraints in usability and functionality because of the on-device battery as the primary power source [1]. For example, periodic charging of wearable devices hampers the continuous monitoring of users' fitness or health conditions [2], and batteries and charging equipment have been identified as one of the most rapidly growing electronic waste streams [3]. To counteract the above-mentioned complications associated with the management of on-device batteries, wireless power transmission technologies capable of charging wearable devices in a completely unobtrusive and seamless manner have become an emerging topic of research over the past decade [4]. Researchers have instrumented daily objects or the surrounding environment with equipment that can wirelessly transfer energy from a variety of sources, such as Radio Frequency (RF) signals, laser, and electromagnetic fields [5]. However, these solutions require large and costly infrastructure and/or need to transmit a significant amount of power to support reasonable power harvesting at the wearable devices, which conflict with the vision of ubiquitously available and scalable charging support.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要